95 research outputs found

    Neonatal rhesus monkey is a potential animal model for studying pathogenesis of EV71 infection

    Get PDF
    AbstractData from limited autopsies of human patients demonstrate that pathological changes in EV71-infected fatal cases are principally characterized by clear inflammatory lesions in different parts of the CNS; nearly identical changes were found in murine, cynomolgus and rhesus monkey studies which provide evidence of using animal models to investigate the mechanisms of EV71 pathogenesis. Our work uses neonatal rhesus monkeys to investigate a possible model of EV71 pathogenesis and concludes that this model could be applied to provide objective indicators which include clinical manifestations, virus dynamic distribution and pathological changes for observation and evaluation in interpreting the complete process of EV71 infection. This induced systemic infection and other collected indicators in neonatal monkeys could be repeated; the transmission appears to involve infecting new monkeys by contact with feces of infected animals. All data presented suggest that the neonatal rhesus monkey model could shed light on EV71 infection process and pathogenesis

    An Ultrasonication-Assisted Cobalt Hydroxide Composite with Enhanced Electrocatalytic Activity toward Oxygen Evolution Reaction

    No full text
    A catalyst toward oxygen evolution reaction (OER) was synthesized by depositing cobalt hydroxide on carbon black. Ultrasonication was applied during precipitation to improve the performance of the catalyst. The ultrasonic-assisted process resulted in the refinement of the cobalt hydroxide particles from 400 nm to 50 nm, and the thorough incorporation of these particles with carbon black substrate. The resulting product exhibited enhanced OER catalytic activity with an onset potential of 1.54 V (vs. reversible hydrogen electrode), a Tafel slope of 18.18 mV/dec, and a stable OER potential at a current density of 10 mA cm−2, because of the reduced resistance of the catalyst and the electron transfer resistance

    Study on Damage Model and Damage Evolution Characteristics of Backfill with Prefabricated Fracture under Seepage-Stress Coupling

    No full text
    Aiming at the backfill with prefabricated fracture under seepage-stress coupling, the concepts of fracture macrodamage, loaded mesodamage, seepage mesodamage, and total damage of backfill were proposed. Based on the macroscopic statistical damage model, the coupling effect of seepage, stress, and initial fracture was considered comprehensively and the damage model of backfill with prefabricated fracture under seepage-stress coupling was established. The mechanical properties of backfill with prefabricated fracture under different seepage water pressures and confining pressures were tested and the rationality of the model was verified. The research shows that the mechanical properties of backfill with prefabricated fracture under the seepage-stress coupling are determined by the seepage water pressure, the load, the initial fracture, and the coupling effect. Fracture and seepage have significant effects on the damage of the backfill. When the seepage water pressure is low, the fracture damage dominates; however, when the seepage water pressure is high, the seepage damage dominates; the total damage under the coupling action is more serious than the single factor. The development laws of the total damage evolution curves under different seepage water pressures and confining pressures are basically the same, and they show the S-shaped distribution law with the increase of the axial strain. With the increase of confining pressure, the damage effect of fracture and seepage on the backfill is weakened, indicating that the confining pressure has a certain inhibitory effect on the damage evolution of the backfill. The research results can provide a theoretical basis for the study of the stability of backfill with geological defects such as joints and fractures in deep high-stress and high-seepage water pressure coal mines

    Complete mitochondrial genome of the Alpine Metacarpal-tubercled Toad Leptobrachella alpina (Amphibia, Anura, Megophryidae)

    No full text
    The complete mitochondrial genome of the Leptobrachella alpina Fei, Ye, and Li 1990, was assembled for the first time. The mitogenome of this species was 17,763 bp in length, containing 13 protein-coding genes, two ribosomal RNA genes (12S rRNA and 16S rRNA), 22 transfer RNA genes (tRNA), and a non-coding control region (D-loop). The base content of the mitogenome was that A, T, G, and C occupied 28.5%, 30.8%, 15.1%, and 25.6%, respectively. The phylogenetic analysis was conducted based on 17 complete mitogenome sequences of the family Megophryidae by the Bayesian inference approach. The phylogenetic tree suggested that Leptobrachium and Oreolalax clustered into a clade and formed a sister group with Leptobrachella. This work is critical for the further genetic research and conservation of this species

    Real-time polarization-sensitive optical coherence tomography data processing with parallel computing.

    No full text
    With the increase of the A-line speed of optical coherence tomography (OCT) systems, real-time processing of acquired data has become a bottleneck. The shared-memory parallel computing technique is used to process OCT data in real time. The real-time processing power of a quad-core personal computer (PC) is analyzed. It is shown that the quad-core PC could provide real-time OCT data processing ability of more than 80 K A-lines per second. A real-time, fiber-based, swept source polarization-sensitive OCT system with 20 K A-line speed is demonstrated with this technique. The real-time 2D and 3D polarization-sensitive imaging of chicken muscle and pig tendon is also demonstrated
    • …
    corecore